Product Description

Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
 

Features

Material: cast iron GG25, GG20  steel: C45
Parts: 2 couplings and 1 tire body.
Size from F40-F250. and Type: “B”, “F”, “H”.
Working temp: -20~80ºC
Transmission torque:10-20000N.M
Axial misalignment: D*2%
Radial deviation: D*1%
Angular misalignment:3°-6°
Application: tire couplings are usually used in wet, dusty, under attract, vibration, rotating, and complex working conditions. like:  diesel pump
Installation: easy on, easy off.
Maintenance: no need for lubricating and durability.
 

Product Description

Size Type Bush No. MaxBore Type F&H Type H Serve over
Key
A C D F M
mm Inch L E L E
F40 B 32 33 22 M5 104 82 11
F40 F 1008 25 1″ 33 22 104 82 11
F40 H 1008 25 1″ 33 22 104 82 11
F50 B 38 43 32 M5 133 100 79 12.5
F50 F 1210 32 1 1/4″ 38 25 133 100 79 12.5
F50 H 1210 32 1 1/4″ 38 25 133 100 79 12.5
F80 B 45 55 33 M6 165 125 70 16.5
F80 F 1610 42 1 5/8″ 42 25 165 125 103 16.5
F60 H 1610 42 1 5/8″ 42 25 165 125 103 16.6
F70 B 50 47 35 M8 187 142 80 60 11.5
F70 F 2012 50 2″ 44 32 187 142 80 50 11.5
F70 H 1810 42 1 5/8″ 42 25 187 142 80 50 11.5
F80 B 60 55 42 M8 211 165 98 54 12.5
F80 F 2517 80 2 1/2″ 58 45 211 165 98 54 12.5
F80 H 2012 50 2″ 45 32 211 165 98 54 12.5
F90 H 70 63.5 49 M10 235 188 108 62 13.5
F90 F 2517 60 2 1/2″ 58.5 45 235 188 108 62 13.5
F90 H 2517 60 2 1/2″ 58.5 45 235 188 108 62 13.5
F100 H 80 63.5 49 M10 235 188 120 62 13.5
F100 F 3571 75 3″ 64.5 51 235 188 125 62 13.5
F100 H 2517 60 2 1/2″ 58.5 45 235 188 113 62 13.5
F110 B 90 75.5 63 M12 279 233 128 62 12.5
F110 F 3571 75 3″ 63.5 51 279 233 134 62 12.5
F110 H 3571 75 3″ 63.5 51 279 233 134 62 12.5
F120 B 100 84.5 70 M12 314 264 140 67 14.5
F120 F 3525 100 4″ 79.5 65 314 264 144 67 14.5
F120 H 3571 75 4″ 85.5 51 314 264 144 67 14.5
F140 B 130 110.5 4 M16 359 311 178 73 16
F140 F 3525 100 4″ 81.5 65 359 311 178 73 16
F140 H 3525 100 4″ 81.5 65 359 311 178 73 18
F160 B 140 117 102 M20 402 345 187 78 16
F160 F 4030 115 4 1/2″ 92 77 402 345 197 78 16
F160 H 4030 115 4 1/2″ 92 77 402 345 197 78 16
F180 B 150 137 114 M16 470 394 205 94 23
F180 F 4536 125 5″ 112 89 470 394 205 94 23
F180 H 4535 125 5″ 112 89 470 394 205 94 23
F200 B 150 138 114 M20 508 429 205 103 24
F200 F 4535 125 5″ 113 89 508 429 205 103 24
F200 H 4535 125 5″ 113 89   508 429 205 103 24
F220 B 160 154.5 127 M20 562 474 223 118 27.5
F220 F 5571 125 5″ 129.5 102 562 474 223 118 27.5
F220 H 5571 125 5″ 129.5 102 562 474 223 118 27.5
F250 H 190   161.5 132 M20 628 522 254 125 29.5

 

Related Products

 

 

Company Profile

 

FAQ

Q: How to ship to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
 

spline coupling

Understanding the torque and speed limits for different mechanical coupling types.

The torque and speed limits of mechanical couplings vary depending on their design, materials, and intended applications. Here’s an overview of the torque and speed considerations for different types of mechanical couplings:

1. Rigid Couplings:

Rigid couplings are typically designed for high torque applications. They provide a direct and solid connection between shafts, making them suitable for transmitting substantial torque without introducing significant flexibility. The torque capacity of rigid couplings depends on the material and size, and they are often used in applications with high power requirements.

Rigid couplings can handle high rotational speeds since they lack flexible elements that may cause vibration or resonance at higher speeds. The speed limits are generally determined by the materials’ strength and the coupling’s balanced design.

2. Flexible Couplings:

Flexible couplings are more forgiving when it comes to misalignment and can accommodate some axial, radial, and angular misalignments. The torque capacity of flexible couplings can vary significantly depending on their design and material.

Elastomeric couplings, such as jaw couplings or tire couplings, have lower torque capacities compared to metal couplings like beam couplings or bellows couplings. The speed limits of flexible couplings are generally lower compared to rigid couplings due to the presence of flexible elements, which may introduce vibration and resonance at higher speeds.

3. Gear Couplings:

Gear couplings are robust and suitable for high-torque applications. They can handle higher torque than many other coupling types. The speed limits of gear couplings are also relatively high due to the strength and rigidity of the gear teeth.

4. Disc Couplings:

Disc couplings offer excellent torque capacity due to the positive engagement of the disc packs. They can handle high torque while being compact in size. The speed limits of disc couplings are also relatively high, making them suitable for high-speed applications.

5. Oldham Couplings:

Oldham couplings have moderate torque capacity and are commonly used in applications with moderate power requirements. Their speed limits are generally limited by the strength and design of the materials used.

6. Universal Couplings (Hooke’s Joints):

Universal couplings have moderate torque capacity and are used in applications where angular misalignment is common. The speed limits are determined by the materials and design of the coupling.

It’s important to refer to the manufacturer’s specifications and recommendations to determine the torque and speed limits of a specific mechanical coupling. Properly selecting a coupling that matches the application’s torque and speed requirements is crucial for ensuring reliable and efficient operation in the mechanical system.

“`spline coupling

Exploring the use of mechanical couplings in high-power and heavy-duty machinery.

Mechanical couplings play a critical role in high-power and heavy-duty machinery, where reliable power transmission and robust performance are essential. These couplings are designed to withstand substantial torque, accommodate misalignment, and provide durability under demanding operating conditions. Here are some key aspects of using mechanical couplings in such machinery:

1. Power Transmission:

In high-power machinery, such as large industrial pumps, compressors, and turbines, mechanical couplings efficiently transfer significant amounts of torque from the driving source (e.g., motor or engine) to the driven equipment. The coupling’s design and material selection are crucial to ensure efficient power transmission and prevent energy losses.

2. Torque Capacity:

Heavy-duty machinery often generates high torque levels during operation. Mechanical couplings used in these applications are designed to handle these high torque requirements without compromising their structural integrity.

3. Misalignment Compensation:

Heavy-duty machinery may experience misalignment due to thermal expansion, foundation settling, or other factors. Mechanical couplings with flexible elements, like elastomeric or grid couplings, can effectively compensate for misalignment, reducing stress on connected equipment and prolonging the machinery’s life.

4. Shock Load Absorption:

High-power machinery may encounter sudden shock loads during starts, stops, or operational changes. Mechanical couplings with damping or shock-absorbing capabilities, such as elastomeric or disc couplings, help protect the equipment from damage and improve overall system reliability.

5. Heavy-Duty Applications:

Heavy-duty machinery, such as mining equipment, construction machinery, and steel rolling mills, require couplings capable of withstanding harsh conditions and heavy loads. Couplings made from robust materials like steel, cast iron, or alloy steel are commonly used in these applications.

6. High-Temperature Environments:

In certain heavy-duty machinery, like industrial furnaces and kilns, mechanical couplings are exposed to high temperatures. Couplings made from high-temperature alloys or materials with excellent heat resistance are selected for such applications.

7. Precision Machinery:

In precision machinery, such as CNC machines and robotics, couplings with low backlash and high torsional stiffness are preferred to ensure accurate and repeatable motion control.

8. Overload Protection:

Some high-power machinery may experience occasional overloads. Couplings with torque-limiting capabilities, like shear pin or magnetic couplings, can act as overload protection, preventing damage to the machinery during such instances.

Mechanical couplings in high-power and heavy-duty machinery are engineered to meet the specific requirements of each application, delivering reliable performance, safety, and efficiency. The proper selection and installation of couplings play a vital role in ensuring the optimal operation of these critical machines.

“`spline coupling

How does a mechanical coupling facilitate the connection between two shafts?

A mechanical coupling plays a critical role in connecting two shafts in a mechanical system and enabling the transmission of torque and motion between them. The process of how a mechanical coupling facilitates this connection can be explained as follows:

1. Physical Linkage:

A mechanical coupling physically links the two shafts together. It consists of two mating components that fit over the respective shaft ends, ensuring a secure connection.

2. Torque Transmission:

When the motor or driving shaft rotates, it generates torque. This torque is transmitted through the mechanical coupling to the driven shaft, causing it to rotate as well.

3. Keyways or Spline Connection:

Many mechanical couplings use keyways or splines to enhance the connection between the shafts. Keyways are slots cut into the shaft and coupling, and a key is inserted to prevent relative motion between the two components.

4. Compression or Expansion Fit:

In some couplings, the connection between the shafts is achieved through a compression or expansion fit. The coupling is designed to be slightly smaller or larger than the shaft diameter, creating a tight fit when assembled.

5. Set Screws or Bolts:

Set screws or bolts are often used in mechanical couplings to secure the coupling tightly to the shafts. These screws apply pressure to prevent any relative movement between the coupling and the shafts during operation.

6. Flexible Elements:

Flexible couplings feature elements made of materials like rubber or elastomers that can bend or flex. These elements accommodate misalignment between the shafts while maintaining the connection and transmitting torque.

7. Key Features:

Certain types of couplings, such as gear couplings or disc couplings, utilize teeth or gear features to achieve a strong and precise connection between the shafts. These key features ensure a positive engagement, enhancing torque transmission.

In summary, a mechanical coupling serves as the link between two rotating shafts, enabling them to function together as a single unit. Whether through a tight compression fit, keyways, or flexible elements, the coupling ensures a secure and efficient connection, allowing torque to be transmitted from one shaft to the other, and enabling the mechanical system to perform its intended function reliably.

“`
China wholesaler Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling   spline couplingChina wholesaler Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling   spline coupling
editor by CX 2023-08-14