Product Description

Introduction
Flexiblespiral screw pipe tube conveyor is bulk material handling equipment, which usually consists of a tube containing either a spiral blade coiled around a shaft (sometimes called an auger), driven at 1 end and held at the other. The main parts include tube, shaft with spiral blades, inlet and outlet chutes, as well as driving device.
The closed pipe-type screw conveyor is a pipe with a shaft inside with welded screw blades and passive bearing. The screw’s blades have different pitch which depends on the type of the transported raw material and the planned capacity. This type of conveyor is closed, which means that the screw cannot be accessed directly. Due to the closed structure, the transported raw material does not spill outside the machine during transport.
The machine can be equipped with a pull screw. In this version, the drive unit is located in the direction of the raw material feeding. Some screw conveyors are equipped with push screws with gear motor installed on the feeding side. The screw conveyor is fitted with an initial or end bearing. Depending on the type of transported raw material, slide or bearing rests are installed.
Horizontal screw conveyor has the advantages of sealed operation, simple structure. screw conveyor suitable for conveying powdery, granular and small bulk materials horizontally or aslope, such as coal, ash, slag, cement, food, etc. screw conveyor is an new transportation equipment.

Features:

Simple structure, good sealing, large capacity, long service life
Convenient installation and maintenance, as well as easy operation.
Working temperature is -20~50ºC, with material temperature below 200 ºC.
Suitable for horizontal and slightly inclined transport of powdery, granular and small lump materials, such as coal, ash, clinker, cement, grain, etc.
Widely used in construction, chemical, power, metallurgy, coal and CZPT industries, etc.

Application: 

Industrial pipe auger spiral flexible screw elevator/conveyor for sugar, flour, coffee, powder is widely used in chemical, metallurgy, paper making, and construction industries. The equipment is mainly suitable for field flowing work, such as concrete mixing station, bulk material transit storage, etc. 

AdvantagePerformance and Features:

It can be sealed to prevent the escape of dust or fumes from inside the conveyor; or prevent dust contamination from outside the conveyor.
It can be used to control the flow of material in processing operations which depend upon accurate batching
It can be utilized in the horizontal, vertical or any inclined position depending upon the characteristics of the product being conveyed.
It can be used as a mixer or agitator to blend dry or fluid ingredients, provide crystallization or coagulant action, or maintain solutions in suspension.
Screw conveyors can have multiple conveyor outlets, making discharge to multiple outlets cost effective.
It can be jacketed to serve as a drier or cooler by running hot or cold water through the jacket.
It can be made out of a variety of materials to resist corrosion, abrasion or heat, depending upon the product being conveyed.
It can be outfitted with multiple inlet and discharge points.

Working Principle:

The screw conveyor consists of power device, gear box, coupling, screw axis and hanging bearing. The screw axis is made of several sections which connected with spline. Hence, the conveyor hold large load capacity and convenient to dismounting. It is open a besel on the casing to ensure a safe operation.
The material moves along the spiral within the tube. The unique action of the flexible spiral conveyor eliminates the risk of the product separation that can take place in conventional pneumatic conveying systems where mixed materials have components of different densities and particle size.
Information Needed For The Quotation
Primary considerations for the selection of a screw conveyor are as follow:
Type and condition of the materials to be handled, including maximum particle size, and, if available, the specific bulk density of the material to be conveyed.
Quantity of transported material, expressed in pounds or tons per hour.
The distance for which the material is to be conveyed.
Below is the necessary information for the selection of a screw conveyor system, presented in a series of 5 steps. These steps are arranged in logical order, and are divided into separate sections for simplicity.The 5 steps are:
Establishing the characteristics of the material to be conveyed.
Locating conveyor capacity (conveyor size and speed) on capacity tables.
Selection of conveyor components.
Calculation of required horsepower.
Checking of components torque capacities (including selection of shaft types and sizes)
 
Maintenance

General Inspection:
Routine periodic inspection of the entire conveyor must be established to ensure continuous maximum operating performance. Keep the area around the conveyor and its drive clean and free of obstacles to provide easy access and avoid functional interference of components.
Power Lock Out:
Lock out power to the motor before attempting any maintenance. Use a padlock and tag on the drive’s controls. Do not remove padlock or tag, nor operate conveyor, until all covers and guards are securely in place.
Removing Screw Sections:
Screw sections are typically removed starting with the end opposite the drive when necessary. Remove trough end, screw sections, coupling shafts, and hangers until damaged or worn section is removed. Reassemble conveyor in reverse order.
Coupling Bolts:
Periodically remove and inspect 1 of the drive shaft coupling bolts for damage or wear. Also inspect the coupling bolt hole. The drive shaft coupling bolts transmit more power than successive coupling bolts and will typically indicate the greatest wear. An accurate torque wrench should always be used when tightening coupling bolts. Excessive torque will stretch the bolt and significantly compromise its strength.
Lubrication:
Lubricate end bearings, hanger bearings and drive components at the frequency and quantity specified by the individual component’s manufacturer. Most types of hanger bearings require lubrication and wear is reduced significantly with a frequent lubrication schedule. Frequency of schedule depends on temperature, type of bearings, type of lubrication, product conveyed, trough load, screw weight, etc.)
Screw Bushings/Internal Collars:
The bushing at each end of a screw will wear over time. When possible, check for excessive shaft movement that indicates bushings need to be replaced. Longer and heavier screws typically have greater bushing wear.

Technical Parameters:
 

Model Screw Diameter Screw Rotation Speed Inclination Angle Conveyor Length
(mm) (r/min) (degree) (m)
GX 200 200 20, 30, 35, 45, 60,
75, 90, 120, 150, 190
< 20° 3~70
GX 250 250
GX 300 300
GX 400 400
GX 500 500
GX 600 600

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China OEM Flexible Spiral Screw CZPT Tube Conveyor     with high qualityChina OEM Flexible Spiral Screw CZPT Tube Conveyor     with high quality