Product Description

The shoulder-type solder tail has a hexagonal shape with an inscribed circle diameter of 22 mm and 25 mm, a length of 108 mm and a length of 159 mm, and is manufactured by a forging process for a light rock drill.
The lug-type shank is used for the inner-turning medium-rail type rock drill, and the diameter of the drill rod is 25mm and 32mm.
The spline type shank is often used for heavy-duty large-scale outer-track rotary rock drills with a diameter of 38mm or more. It is manufactured by common machining methods.
The shank used in China’s mines is mainly made of 35SiMnMoV or 24SiMnNi2CrMo, and the service life of the latter is significantly improved.
 

T38 T45 T51 Thread Shank Adaptor for Top Hammer drill rig
Shank adaptor or shank adapter, the task of the shank adapter is to transmit rotation torque, feed force, impact energy and flushing medium to the drill string.
The shank adapters from Pro-drill are there fore designed to with stand the high impact power of modern rock drills and made from specially selected material which also is hardened through cauterizing. Around 300 different shank adapters suitable for different rock drills are currently available from CZPT series drifters, Tamrock series drifters, Garden Dever series drifters etc.
Male shank adapters are ideal for drifting, tunneling & extension application where high bending stresses are present, Female shank adapters are used when the drilling space is limited and the total feed length is important.

 

The rock drill must be maintained in a high degree of maintenance during maintenance and repair. The replacement of the shank, front part, bolts, joints and hydraulic motor can be carried out at the construction site. All other maintenance and repairs must be carried out in a suitable work space and should be isolated from dusting operations.

 

Matters need attention:

1. Operate in different rock formations, select different types of drill bit, shaft pressure and rotation speed according to the softness and hardness of lithology.
2. When the drilling machine is perforated, it must comply with the original 3 parameters (wind pressure, axial pressure, speed) and the parameters recommended by the drill sample.then work.
3, before the drill bit, please check the appearance of each part, verify the drill wire end face and the drill bit packing box and the factory number on the certificate Consistent to prevent counterfeiting.
4. The drill bit is reasonably stored on the rig to prevent dust and other debris from entering the drill bit.
5. When the drill bit is replaced, it is necessary to ensure that there is no dust inside the drill, the air outlet is smooth, the thread is smeared, and the lifting and turning joints are used.It can be used only after the drill bit is connected.
6. Before replacing a new drill bit, carefully check whether the 3 cones are flexible, and whether the thread and teeth are intact.
7. When the new drill bit is drilled, it is necessary to run the low shaft pressure and low speed for 20-30 minutes, then gradually increase to the normal axial pressure.
8. When the new drill bit is newly opened, it is necessary to pay attention to clear the debris around the hole (rock, scrap metal, etc.), and at the same time,Slow ventilation, close to the surface, to prevent drilling, impact damage to the drill bit.
9. Working in soft rock formations, changing the drill bit in the middle, it is necessary to strictly check the alloy teeth of the outer kidney drill bit and the tooth on the cone.If there is no falling off, etc., if it falls to the bottom of the hole, if there is any old bit residue in the hole, it is strictly forbidden to use the new drill bit in the original hole.
10. When the rig is shut down, the drilling tool cannot be parked in the hole with water to prevent the slag and water from flowing back into the bearing and damage.bad drill bit.
11. When there are cracks in the rock or cracks in the rock caused by the crushing and working in the goaf, reduce the axial pressure and the rotational speed to prevent the teeth.the doctor broke.
12. When the drilling tool is in the hole, it is forbidden to reverse the hole to prevent the bit from falling.
13. When the drill bit is in the hole and the air compressor suddenly stops working, the rock slag is easy to enter the outer head, so it is strictly forbidden to rotate for a long time, resulting in bearing wear, repeated crushing of rock debris (click drill), and bit wear acceleration.
14. During the normal perforation operation, the main air path of the air compressor cannot have a serious air leakage phenomenon to ensure sufficient enthalpy and wind pressure.Extend the life of the drill bit.
15. The stabilizer bar is replaced regularly to ensure the stability of the drill pipe and make the drill bit work normally.
16. It is strictly forbidden to use the curved drill pipe to avoid uneven force on the 3 teeth of the drill bit and accelerate the damage of the drill bit.
17. The drill bit should be protected from moisture and ventilation. It is strictly forbidden to bump the cone and thread during handling.

 

Advantages:
Compared with the oversea brands, our advantages are bellowing:
A. Our products can match over 95% against the original products
B. Price are competitive against the famous brands and best quality against the small factory

 

Product Name: shank adaptor
Description: shank adaptor
Shank adaptor is used for transmitting power between drill machine and drill stems.
MOQ: No MOQ required for testing and trial order
Thread: R32,R38,T38,T45,T51
Length: 300mm-800mm
our shank adaptors are available for :

 

(COP1238,COP1838,COP1032 etc)
(HD715,HD612,HD609,PD200 etc)
(VL140,VL671,YH80A etc)
(HLX5,HL600,HL500,HL300,HL700,HL850,HL1000,HL1500 etc)

If you have interesting about this production,just feel free to contact with me  

The Different Types of Splines in a Splined Shaft

A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
splineshaft

Involute splines

Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.

Parallel splines

Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
splineshaft

Serrated splines

A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.

Ball splines

The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
splineshaft

Sector no-go gage

A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.

China Custom HD300-T38-654 Shank Adapter Furukawa     with Best SalesChina Custom HD300-T38-654 Shank Adapter Furukawa     with Best Sales